财讯中国

OLED的结构原理及优缺点

来源:网络 2021-12-20 18:19:44

第一节、概述

OLED,即有机发光二极管(OrganicLight-EmittingDiode),又称为有机电激光显示(OrganicElectroluminesenceDisplay,OELD)。因为具备轻薄、省电等特性,因此从2003年开始,这种显示设备在MP3播放器上得到了广泛应用,而对于同属数码类产品的DC与手机,此前只是在一些展会上展示过采用OLED屏幕的工程样品,还并未走入实际应用的阶段。但OLED屏幕却具备了许多LCD不可比拟的优势,因此它也一直被业内人士所看好。

OLED显示技术与传统的LCD显示方式不同,无需背光灯,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光。而且OLED显示屏幕可以做得更轻更薄,可视角度更大,并且能够显著节省电能。

目前在OLED的二大技术体系中,低分子OLED技术为日本掌握,而高分子的PLEDLG手机的所谓OEL就是这个体系,技术及专利则由英国的科技公司CDT掌握,两者相比PLED产品的彩色化上仍有困难。而低分子OLED则较易彩色化,不久前三星就发布了65530色的手机用OLED。

不过,虽然将来技术更优秀的OLED会取代TFT等LCD,但有机发光显示技术还存在使用寿命短、屏幕大型化难等缺陷。目前采用OLED的主要是三星如新上市的SCH-X339就采用了256色的OLED,至于OEL则主要被LG采用在其CU81808280上我们都有见到。

为了形像说明OLED构造,可以将每个OLED单元比做一块汉堡包,发光材料就是夹在中间的蔬菜。每个OLED的显示单元都能受控制地产生三种不同颜色的光。OLED与LCD一样,也有主动式和被动式之分。被动方式下由行列地址选中的单元被点亮。主动方式下,OLED单元后有一个薄膜晶体管(TFT),发光单元在TFT驱动下点亮。主动式的OLED比较省电,但被动式的OLED显示性能更佳。

第二节、OLED的结构、原理

OLED的基本结构是由一薄而透明具半导体特性之铟锡氧化物(ITO),与电力之正极相连,再加上另一个金属阴极,包成如三明治的结构。整个结构层中包括了:电洞传输层(HTL)、发光层(EL)与电子传输层(ETL)。当电力供应至适当电压时,正极电洞与阴极电荷就会在发光层中结合,产生光亮,依其配方不同产生红、绿和蓝RGB三原色,构成基本色彩。OLED的特性是自己发光,不像TFTLCD需要背光,因此可视度和亮度均高,其次是电压需求低且省电效率高,加上反应快、重量轻、厚度薄,构造简单,成本低等,被视为21世纪最具前途的产品之一。

有机发光二极体的发光原理和无机发光二极体相似。当元件受到直流电(DirectCurrent;DC)所衍生的顺向偏压时,外加之电压能量将驱动电子(Electron)与电洞(Hole)分别由阴极与阳极注入元件,当两者在传导中相遇、结合,即形成所谓的电子-电洞复合(Electron-HoleCapture)。而当化学分子受到外来能量激发後,若电子自旋(ElectronSpin)和基态电子成对,则为单重态(Singlet),其所释放的光为所谓的萤光(Fluorescence);反之,若激发态电子和基态电子自旋不成对且平行,则称为三重态(Triplet),其所释放的光为所谓的磷光(Phosphorescence)。

当电子的状态位置由激态高能阶回到稳态低能阶时,其能量将分别以光子(LightEmission)或热能(HeatDissipation)的方式放出,其中光子的部分可被利用当作显示功能;然有机萤光材料在室温下并无法观测到三重态的磷光,故PM-OLED元件发光效率之理论极限值仅25%。

PM-OLED发光原理是利用材料能阶差,将释放出来的能量转换成光子,所以我们可以选择适当的材料当作发光层或是在发光层中掺杂染料以得到我们所需要的发光颜色。此外,一般电子与电洞的结合反应均在数十奈秒(ns)内,故PM-OLED的应答速度非常快。

P.S.:PM-OLEM的典型结构。典型的PM-OLED由玻璃基板、ITO(indiumtinoxide;铟锡氧化物)阳极(Anode)、有机发光层(EmittingMaterialLayer)与阴极(Cathode)等所组成,其中,薄而透明的ITO阳极与金属阴极如同三明治般地将有机发光层包夹其中,当电压注入阳极的电洞(Hole)与阴极来的电子(Electron)在有机发光层结合时,激发有机材料而发光。

而目前发光效率较佳、普遍被使用的多层PM-OLED结构,除玻璃基板、阴阳电极与有机发光层外,尚需制作电洞注入层(HoleInjectLayer;HIL)、电洞传输层(HoleTransportLayer;HTL)、电子传输层(ElectronTransportLayer;ETL)与电子注入层(ElectronInjectLayer;EIL)等结构,且各传输层与电极之间需设置绝缘层,因此热蒸镀(Evaporate)加工难度相对提高,制作过程亦变得复杂。

由于有机材料及金属对氧气及水气相当敏感,制作完成後,需经过封装保护处理。PM-OLED虽需由数层有机薄膜组成,然有机薄膜层厚度约仅1,000~1,500A°(0.10~0.15um),整个显示板(Panel)在封装加乾燥剂(Desiccant)後总厚度不及200um(2mm),具轻薄之优势。

第三节、有机发光材料的选用

有机材料的特性深深地影响元件之光电特性表现。在阳极材料的选择上,材料本身必需是具高功函数(Highworkfunction)与可透光性,所以具有4.5eV-5.3eV的高功函数、性质稳定且透光的ITO透明导电膜,便被广泛应用于阳极。在阴极部分,为了增加元件的发光效率,电子与电洞的注入通常需要低功函数(Lowworkfunction)的Ag、Al、Ca、In、Li与Mg等金属,或低功函数的复合金属来制作阴极(例如:Mg-Ag镁银)。

适合传递电子的有机材料不一定适合传递电洞,所以有机发光二极体的电子传输层和电洞传输层必须选用不同的有机材料。目前最常被用来制作电子传输层的材料必须制膜安定性高、热稳定且电子传输性佳,一般通常采用萤光染料化合物。如Alq、Znq、Gaq、Bebq、Balq、DPVBi、ZnSPB、PBD、OXD、BBOT等。而电洞传输层的材料属于一种芳香胺萤光化合物,如TPD、TDATA等有机材料。

有机发光层的材料须具备固态下有较强萤光、载子传输性能好、热稳定性和化学稳定性佳、量子效率高且能够真空蒸镀的特性,一般有机发光层的材料使用通常与电子传输层或电洞传输层所采用的材料相同,例如Alq被广泛用于绿光,Balq和DPVBi则被广泛应用于蓝光。

一般而言,OLED可按发光材料分为两种:小分子OLED和高分子OLED(也可称为PLED)。小分子OLED和高分子OLED的差异主要表现在器件的制备工艺不同:小分子器件主要采用真空热蒸发工艺,高分子器件则采用旋转涂覆或喷涂印刷工艺。小分子材料厂商主要有:Eastman、Kodak、出光兴产、东洋INK制造、三菱化学等;高分子材料厂商主要有:CDT、Covin、DowChemical、住友化学等。目前国际上与OLED有关的专利已经超过1400份,其中最基本的专利有三项。小分子OLED的基本专利由美国Kodak公司拥有,高分子OLED的专利由英国的CDT(CambridgeDisPlayTechnology)和美国的Uniax公司拥有。

第四节、OLED关键工艺

一、氧化铟锡(ITO)基板前处理

(1)ITO表面平整度:ITO目前已广泛应用在商业化的显示器面板制造,其具有高透射率、低电阻率及高功函数等优点。一般而言,利用射频溅镀法(RFsputtering)所制造的ITO,易受工艺控制因素不良而导致表面不平整,进而产生表面的尖端物质或突起物。另外高温锻烧及再结晶的过程亦会产生表面约10~30nm的突起层。这些不平整层的细粒之间所形成的路径会提供空穴直接射向阴极的机会,而这些错综复杂的路径会使漏电流增加。一般有三个方法可以解决这表面层的影响?U一是增加空穴注入层及空穴传输层的厚度以降低漏电流,此方法多用于PLED及空穴层较厚的OLED(~200nm)。二是将ITO玻璃再处理,使表面光滑。三是使用其它镀膜方法使表面平整度更好。

(2)ITO功函数的增加:当空穴由ITO注入HIL时,过大的位能差会产生萧基能障,使得空穴不易注入,因此如何降低ITO/HIL接口的位能差则成为ITO前处理的重点。一般我们使用O2-Plasma方式增加ITO中氧原子的饱和度,以达到增加功函数之目的。ITO经O2-Plasma处理后功函数可由原先之4.8eV提升至5.2eV,与HIL的功函数已非常接近。

加入辅助电极,由于OLED为电流驱动组件,当外部线路过长或过细时,于外部电路将会造成严重之电压梯度,使真正落于OLED组件之电压下降,导致面板发光强度减少。由于ITO电阻过大(10ohm/square),易造成不必要之外部功率消耗,增加一辅助电极以降低电压梯度成了增加发光效率、减少驱动电压的快捷方式。铬(Cr:Chromium)金属是最常被用作辅助电极的材料,它具有对环境因子稳定性佳及对蚀刻液有较大的选择性等优点。然而它的电阻值在膜层为100nm时为2ohm/square,在某些应用时仍属过大,因此在相同厚度时拥有较低电阻值的铝(Al:Aluminum)金属(0.2ohm/square)则成为辅助电极另一较佳选择。但是,铝金属的高活性也使其有信赖性方面之问题因此,多叠层之辅助金属则被提出,如:Cr/Al/Cr或Mo/Al/Mo,然而此类工艺增加复杂度及成本,故辅助电极材料的选择成为OLED工艺中的重点之一。

二、阴极工艺

在高解析的OLED面板中,将细微的阴极与阴极之间隔离,一般所用的方法为蘑菇构型法(Mushroomstructureapproach),此工艺类似印刷技术的负光阻显影技术。在负光阻显影过程中,许多工艺上的变异因子会影响阴极的品质及良率。例如,体电阻、介电常数、高分辨率、高Tg、低临界维度(CD)的损失以及与ITO或其它有机层适当的黏着接口等。

三、封装

⑴吸水材料:一般OLED的生命周期易受周围水气与氧气所影响而降低。水气来源主要分为两种:一是经由外在环境渗透进入组件内,另一种是在OLED工艺中被每一层物质所吸收的水气。为了减少水气进入组件或排除由工艺中所吸附的水气,一般最常使用的物质为吸水材(Desiccant)。Desiccant可以利用化学吸附或物理吸附的方式捕捉自由移动的水分子,以达到去除组件内水气的目的。

⑵工艺及设备开发:封装工艺之流程如图四所示,为了将Desiccant置于盖板及顺利将盖板与基板黏合,需在真空环境或将腔体充入不活泼气体下进行,例如氮气。值得注意的是,如何让盖板与基板这两部分工艺衔接更有效率、减少封装工艺成本以及减少封装时间以达最佳量产速率,已俨然成为封装工艺及设备技术发展的3大主要目标。

关键词: OLED

相关新闻

走安顺进定西 海信冰箱再现教育扶贫“山海情”
2022-01-17 13:48:41
最强性能二合一轻薄本ROG幻X 1月24日即将开启预约
2022-01-17 13:48:30
小米竖向折叠屏 价格有惊喜主打女性市场
2022-01-17 13:48:19
QQ飞车手游S联赛总决赛 真我GT2系列成2022官方指定用机
2022-01-17 13:48:08
免费获得小米有品会员!小米有品有鱼App3月停运给用户送福利
2022-01-17 13:47:57
曝真我GT2 Pro春节前上市 20日举行预沟通会
2022-01-17 13:46:06
【手慢无】240GB固态秒杀促销 仅售168元
2022-01-17 12:12:24
AMD新款Radeon Pro专业卡:终于用上6nm
2022-01-17 12:12:16
《永劫无间》再曝新英雄 顾清寒傲立雪中
2022-01-17 12:12:07
三星新品发布会2月9日召开 S22系列即将登场
2022-01-17 12:12:00
12月显卡出货量下降19%,还是涨价的锅
2022-01-17 12:11:52
Intel i5-12400性能暴涨30%!还是超频管用
2022-01-17 12:11:44
黑鲨和玩家同在!新机沿用SSD存储?
2022-01-17 12:11:36
是买不起的样子:3090ti起步2万3
2022-01-17 12:11:27
无线充电加持!曝iPad Pro 6升级M2处理器
2022-01-17 12:11:19
宁德时代:不差钱还融资是为了增产
2022-01-17 12:11:11
好评94%!7万在线!《战神》PC版疯了
2022-01-17 12:11:00
【必买】支持MagSafe磁吸功能 魅族PANDAER“黑化独角兽”手机壳支持iPhone 13系列
2022-01-17 12:10:53
腾讯游戏:寒假打游戏的时间最多14个小时
2022-01-17 12:10:43
1小时游玩假?腾讯春节防沉迷日历发布
2022-01-17 12:10:34
2月9日亮相 Galaxy S22全新配色将来袭
2022-01-17 12:10:23
京东2022年将招聘超2万高校毕业生
2022-01-17 12:10:15
美国拍卖5G频谱 运营商投入超300亿美元
2022-01-17 12:10:06
8088元起 微软Surface Pro 8 商用版正式开售
2022-01-17 12:09:58
起售或是250欧元 Redmi Note 11将在欧洲发布
2022-01-17 12:09:50
曝真我GT2 Pro春节前上市 20日举行预沟通会
2022-01-17 12:08:06
好料好味道,有礼有年味——京味客祝您虎年福礼满满
好料好味道,有礼有年味——京味客祝您虎年福礼满满
2022-01-17 10:59:35
iPad Pro 6曝光:配置拉满 3月发布 7000起
2022-01-17 10:58:23
非公RTX 3090 Ti显卡海外竟上架:最贵2.9万 翻了一倍
2022-01-17 10:58:14
三星2月9日发布S22系列:真机在官网曝光
2022-01-17 10:58:03
三星S21手机限时立减1450 现3549 今晚截止
2022-01-17 10:56:24
2022年第五届CRO全球责任峰会成功举办
2022年第五届CRO全球责任峰会成功举办
2022-01-17 10:55:22
三星全年卖3亿台手机:卖最多的不是S21
2022-01-17 10:55:01
售价过万!曝三星Galaxy S22 Ultra有1TB版
2022-01-17 10:54:49
2022年PS5必买游戏榜单:照着买没错
2022-01-17 10:54:40
【手慢无】新装机神器 i5-12400F处理器1499元热销
2022-01-17 10:54:30
英特尔13代酷睿或将增大缓存容量 L2 + L3达到68 MB
2022-01-17 10:54:20
功耗爆表 i5-12400超频至 5.2 GHz
2022-01-17 10:54:07
配有手写笔 moto G Stylus手机视频曝光:屏幕开孔位于中央
2022-01-17 10:53:50
小米MIX FOLD2真机上手图曝光 内屏无挖孔
2022-01-17 10:53:38
通话变吵闹?iPhone13移除电话降噪功能
2022-01-17 10:53:25
曝真我GT2 Pro春节前上市 20日举行预沟通会
2022-01-17 10:49:36
周秉钧韩银山一行参观广东东江纵队纪念馆
周秉钧韩银山一行参观广东东江纵队纪念馆
2022-01-17 09:21:35
小米新机海外发售:竟然比小米12 Pro强
2022-01-17 09:09:34
曝真我GT2 Pro春节前上市 20日举行预沟通会
2022-01-17 09:08:04
iPad Pro 6曝光:升级M2处理器并支持120HZ高刷新率
iPad Pro 6曝光:升级M2处理器并支持120HZ高刷新率
2022-01-17 08:41:04
苹果新旗舰AR设备曝光:可支持8K分辨率,售价超万元
苹果新旗舰AR设备曝光:可支持8K分辨率,售价超万元
2022-01-17 08:38:24
三星S22 Ultra曝光:12GB+512GB版本售价超万元
三星S22 Ultra曝光:12GB+512GB版本售价超万元
2022-01-17 08:33:04
成本上升!曝AMD EPYC处理器涨价10%~30%!
成本上升!曝AMD EPYC处理器涨价10%~30%!
2022-01-17 08:31:18
中国区12月显卡出货量出炉:七彩虹近20万出货量稳坐第一
中国区12月显卡出货量出炉:七彩虹近20万出货量稳坐第一
2022-01-17 08:28:59
Intel i5-12400全核超频5.2GHz:最大加速功耗117W
Intel i5-12400全核超频5.2GHz:最大加速功耗117W
2022-01-17 08:27:51
微信iOS版更新加入语音暂停功能:长语音消息可暂停并继续播放
微信iOS版更新加入语音暂停功能:长语音消息可暂停并继续播放
2022-01-17 08:26:14
低级错误!火狐浏览器无法上网原因竟是程序员大小写搞错了
低级错误!火狐浏览器无法上网原因竟是程序员大小写搞错了
2022-01-17 08:24:11
藏起来我就用不了了?教你如何在Win11上找出隐藏IE浏览器
藏起来我就用不了了?教你如何在Win11上找出隐藏IE浏览器
2022-01-17 08:22:23
一键切换不用愁!Win11必备小工具让体验更顺手
一键切换不用愁!Win11必备小工具让体验更顺手
2022-01-17 08:18:40
想让Win11运行Win10开始菜单 下载这个小程序 1秒解决
2022-01-17 07:42:21
曝真我GT2 Pro春节前上市 20日举行预沟通会
2022-01-17 07:40:45
专业卡也用上6nm?AMD新款Radeon Pro专业卡曝光
2022-01-17 06:11:37
PC画质居然更优秀?《战神4》三平台对比
2022-01-17 06:11:29
显卡盲盒!800块有机会抽到RTX3090
2022-01-17 06:11:22
Intel 13代酷睿缓存或将提升至68MB
2022-01-17 06:11:14
三星Galaxy S22发布会将在2月9日23:00开启
2022-01-17 06:11:07
Powerbeats用户集体起诉苹果
2022-01-17 06:10:59
史上最烂《战地》续作!外挂都不想为其更新
2022-01-17 06:10:52
44万人强力围观 小米之家山西分舵开了个话题直接上热搜
2022-01-17 06:10:44
Win11测试出现乱码!中文阅读受到影响
2022-01-17 06:10:34
雷蛇灵刃14发布:标配锐龙9 6900HX 顶配3080Ti 售价1.3万
2022-01-17 06:10:25
美国玩家也氪金!《原神》2021年在美国狂赚近25亿人民币
2022-01-17 06:10:17
小米平板5系列全量更新MIUI13 不会更新的看这里
2022-01-17 06:10:09
苹果首次允许App内第三方支付
2022-01-17 06:10:00
十年了!Windows11新音量调节指示器
2022-01-17 06:09:52
买得起Kindle看不起书 到底谁在为电子水墨屏买单?
2022-01-17 06:09:44
摩托罗拉新机曝光 搭载骁龙SM8475+125W快充
2022-01-17 06:09:34
威刚秀肌肉!PCIe 5.0固态读取速度恐怖!14GB/s
2022-01-17 06:09:25
曝真我GT2 Pro春节前上市 20日举行预沟通会
2022-01-17 06:08:02
曝真我GT2 Pro春节前上市 20日举行预沟通会
2022-01-16 22:46:35
曝iPhone 14全系标配120Hz:起售价还是5999
2022-01-16 21:09:44
ROG新品!在CES推出42英寸显示器 OLED面板
2022-01-16 21:09:33
12代酷睿新品!雷神推出游戏/设计新主机
2022-01-16 21:09:21
曝真我GT2 Pro春节前上市 20日举行预沟通会
2022-01-16 21:08:01
Moto新机曝光,即将开启两亿像素新时代
2022-01-16 19:41:57
小米11系列开启推送MIUI 13系统,公测反馈良好
2022-01-16 19:41:44
红魔7跑分、配置曝光,单核1219,多核3732
2022-01-16 19:40:37
Redmi K50 高配版有望搭载索尼 IMX766 传感器
2022-01-16 19:40:15
解决镀金端子氧化发黑问题 苹果将推新版Lightning充电线
2022-01-16 19:40:02
120Hz高刷 OPPO平板电脑现身跑分网站
2022-01-16 19:39:51
曝真我GT2 Pro春节前上市 20日举行预沟通会
2022-01-16 19:38:29
2000元到手 骁龙680版Redmi Note11要来
2022-01-16 18:10:05
2月9日见!三星S22系列手机发布会定档
2022-01-16 18:09:49
小米 11 Ultra开启内测NFC“读写勿扰”与“解锁后使用”功能
2022-01-16 18:09:35
后置四摄 红米Redmi Note 11S渲染图曝光
2022-01-16 18:09:21
曝真我GT2 Pro春节前上市 20日举行预沟通会
2022-01-16 18:08:02
现磨咖啡5元一杯 蜜雪冰城讨好小镇青年
2022-01-16 17:18:11
又一家中资企业打入日本加密货币市场 Amber数亿日元买下持牌交易所
2022-01-16 17:17:59
电动车 没有新革命
2022-01-16 17:17:47
电动车“私桩共享可行吗”引热议 威马汽车创始人给答案
2022-01-16 17:17:37
防疲劳、还是导航信号?高速路上的绿色激光灯有什么用?
2022-01-16 17:17:25
AT&T、Dish和T-Mobile投入数十亿美元购买更多5G频谱
2022-01-16 17:17:14
美国税局可能会对NFT和加密货币征收不同的税
2022-01-16 17:17:03
虚拟偶像满足粉丝想象?专家预警或影响结婚生子
2022-01-16 17:16:50

热门文章

热点专题