榨干所有性能!9个技巧让你的PyTorch模型训练变得飞快!
不要让你的神经网络变成这样
让我们面对现实吧,你的模型可能还停留在石器时代。我敢打赌你仍然使用32位精度或GASP甚至只在一个GPU上训练。
我明白,网上都是各种神经网络加速指南,但是一个checklist都没有(现在有了),使用这个清单,一步一步确保你能榨干你模型的所有性能。
本指南从最简单的结构到最复杂的改动都有,可以使你的网络得到最大的好处。我会给你展示示例Pytorch代码以及可以在Pytorch- lightning Trainer中使用的相关flags,这样你可以不用自己编写这些代码!
**这本指南是为谁准备的?**任何使用Pytorch进行深度学习模型研究的人,如研究人员、博士生、学者等,我们在这里谈论的模型可能需要你花费几天的训练,甚至是几周或几个月。
我们会讲到:
使用DataLoaders DataLoader中的workers数量 Batch size 梯度累计 保留的计算图 移动到单个 16-bit 混合精度训练 移动到多个GPUs中(模型复制) 移动到多个GPU-nodes中 (8+GPUs) 思考模型加速的技巧
Pytorch-Lightning
你可以在Pytorch的库Pytorch- lightning中找到我在这里讨论的每一个优化。Lightning是在Pytorch之上的一个封装,它可以自动训练,同时让研究人员完全控制关键的模型组件。Lightning 使用最新的最佳实践,并将你可能出错的地方最小化。
我们为MNIST定义LightningModel并使用Trainer来训练模型。
frompytorch_lightningimportTrainermodel=LightningModule(…)trainer=Trainer()trainer.fit(model)
1. DataLoaders
这可能是最容易获得速度增益的地方。保存h5py或numpy文件以加速数据加载的时代已经一去不复返了,使用Pytorch dataloader加载图像数据很简单(对于NLP数据,请查看TorchText)。
在lightning中,你不需要指定训练循环,只需要定义dataLoaders和Trainer就会在需要的时候调用它们。
dataset=MNIST(root=self.hparams.data_root,traintrain=train,download=True)loader=DataLoader(dataset,batch_size=32,shuffle=True)forbatchinloader:x,y=batchmodel.training_step(x,y)...
2. DataLoaders 中的 workers 的数量
另一个加速的神奇之处是允许批量并行加载。因此,您可以一次装载nb_workers个batch,而不是一次装载一个batch。
#slowloader=DataLoader(dataset,batch_size=32,shuffle=True)#fast(use10workers)loader=DataLoader(dataset,batch_size=32,shuffle=True,num_workers=10)
3. Batch size
在开始下一个优化步骤之前,将batch size增大到CPU-RAM或GPU-RAM所允许的最大范围。
下一节将重点介绍如何帮助减少内存占用,以便你可以继续增加batch size。
记住,你可能需要再次更新你的学习率。一个好的经验法则是,如果batch size加倍,那么学习率就加倍。
4. 梯度累加
在你已经达到计算资源上限的情况下,你的batch size仍然太小(比如8),然后我们需要模拟一个更大的batch size来进行梯度下降,以提供一个良好的估计。
假设我们想要达到128的batch size大小。我们需要以batch size为8执行16个前向传播和向后传播,然后再执行一次优化步骤。
#clearlaststepoptimizer.zero_grad()#16accumulatedgradientstepsscaled_loss=0foraccumulated_step_iinrange(16):out=model.forward()loss=some_loss(out,y)loss.backward()scaled_loss+=loss.item()#updateweightsafter8steps.effectivebatch=8*16optimizer.step()#lossisnowscaledupbythenumberofaccumulatedbatchesactual_loss=scaled_loss/16
在lightning中,全部都给你做好了,只需要设置accumulate_grad_batches=16:
trainer=Trainer(accumulate_grad_batches=16)trainer.fit(model)
5. 保留的计算图
一个最简单撑爆你的内存的方法是为了记录日志存储你的loss。
losses=[]...losses.append(loss)print(f'currentloss:{torch.mean(losses)'})
上面的问题是,loss仍然包含有整个图的副本。在这种情况下,调用.item()来释放它。
#badlosses.append(loss)#goodlosses.append(loss.item())
Lightning会非常小心,确保不会保留计算图的副本。
6. 单个GPU训练
一旦你已经完成了前面的步骤,是时候进入GPU训练了。在GPU上的训练将使多个GPU cores之间的数学计算并行化。你得到的加速取决于你所使用的GPU类型。我推荐个人用2080Ti,公司用V100。
乍一看,这可能会让你不知所措,但你真的只需要做两件事:1)移动你的模型到GPU, 2)每当你运行数据通过它,把数据放到GPU上。
#putmodelonGPUmodel.cuda(0)#putdataongpu(cudaonavariablereturnsacudacopy)xx=x.cuda(0)#runsonGPUnowmodel(x)
如果你使用Lightning,你什么都不用做,只需要设置Trainer(gpus=1)。
#asklightningtousegpu0fortrainingtrainer=Trainer(gpus=[0])trainer.fit(model)
在GPU上进行训练时,要注意的主要事情是限制CPU和GPU之间的传输次数。
#expensivexx=x.cuda(0)#veryexpensivexx=x.cpu()xx=x.cuda(0)
如果内存耗尽,不要将数据移回CPU以节省内存。在求助于GPU之前,尝试以其他方式优化你的代码或GPU之间的内存分布。
另一件需要注意的事情是调用强制GPU同步的操作。清除内存缓存就是一个例子。
#reallybadidea.StopsalltheGPUsuntiltheyallcatchuptorch.cuda.empty_cache()
但是,如果使用Lightning,惟一可能出现问题的地方是在定义Lightning Module时。Lightning会特别注意不去犯这类错误。
7. 16-bit 精度
16bit精度是将内存占用减半的惊人技术。大多数模型使用32bit精度数字进行训练。然而,最近的研究发现,16bit模型也可以工作得很好。混合精度意味着对某些内容使用16bit,但将权重等内容保持在32bit。
要在Pytorch中使用16bit精度,请安装NVIDIA的apex库,并对你的模型进行这些更改。
#enable16-bitonthemodelandtheoptimizermodel,optimizers=amp.initialize(model,optimizers,opt_level='O2')#whendoing.backward,letampdoitsoitcanscalethelosswithamp.scale_loss(loss,optimizer)asscaled_loss:scaled_loss.backward()
amp包会处理好大部分事情。如果梯度爆炸或趋向于0,它甚至会缩放loss。
在lightning中,启用16bit并不需要修改模型中的任何内容,也不需要执行我上面所写的操作。设置Trainer(precision=16)就可以了。
trainer=Trainer(amp_level='O2',use_amp=False)trainer.fit(model)
8. 移动到多个GPUs中
现在,事情变得非常有趣了。有3种(也许更多?)方法来进行多GPU训练。
分batch训练
A) 拷贝模型到每个GPU中,B) 给每个GPU一部分batch
第一种方法被称为“分batch训练”。该策略将模型复制到每个GPU上,每个GPU获得batch的一部分。
#copymodeloneachGPUandgiveafourthofthebatchtoeachmodel=DataParallel(model,devices=[0,1,2,3])#outhas4outputs(oneforeachgpu)out=model(x.cuda(0))
在lightning中,你只需要增加GPUs的数量,然后告诉trainer,其他什么都不用做。
#asklightningtouse4GPUsfortrainingtrainer=Trainer(gpus=[0,1,2,3])trainer.fit(model)
模型分布训练
将模型的不同部分放在不同的GPU上,batch按顺序移动
有时你的模型可能太大不能完全放到内存中。例如,带有编码器和解码器的序列到序列模型在生成输出时可能会占用20GB RAM。在本例中,我们希望将编码器和解码器放在独立的GPU上。
#eachmodelissooobigwecan'tfitbothinmemoryencoder_rnn.cuda(0)decoder_rnn.cuda(1)#runinputthroughencoderonGPU0encoder_out=encoder_rnn(x.cuda(0))#runoutputthroughdecoderonthenextGPUout=decoder_rnn(encoder_out.cuda(1))#normallywewanttobringalloutputsbacktoGPU0outout=out.cuda(0)
对于这种类型的训练,在Lightning中不需要指定任何GPU,你应该把LightningModule中的模块放到正确的GPU上。
classMyModule(LightningModule):def__init__():self.encoder=RNN(...)self.decoder=RNN(...)defforward(x):#modelswon'tbemovedafterthefirstforwardbecause#theyarealreadyonthecorrectGPUsself.encoder.cuda(0)self.decoder.cuda(1)out=self.encoder(x)out=self.decoder(out.cuda(1))#don'tpassGPUstotrainermodel=MyModule()trainer=Trainer()trainer.fit(model)
两者混合
在上面的情况下,编码器和解码器仍然可以从并行化操作中获益。
#changetheselinesself.encoder=RNN(...)self.decoder=RNN(...)#tothese#noweachRNNisbasedonadifferentgpusetself.encoder=DataParallel(self.encoder,devices=[0,1,2,3])self.decoder=DataParallel(self.encoder,devices=[4,5,6,7])#inforward...out=self.encoder(x.cuda(0))#noticeinputsonfirstgpuindevicesout=self.decoder(out.cuda(4))#使用多个GPU时要考虑的注意事项:如果模型已经在GPU上了,model.cuda()不会做任何事情。 总是把输入放在设备列表中的第一个设备上。 在设备之间传输数据是昂贵的,把它作为最后的手段。 优化器和梯度会被保存在GPU 0上,因此,GPU 0上使用的内存可能会比其他GPU大得多
9. 多节点GPU训练
每台机器上的每个GPU都有一个模型的副本。每台机器获得数据的一部分,并且只在那部分上训练。每台机器都能同步梯度。
如果你已经做到了这一步,那么你现在可以在几分钟内训练Imagenet了!这并没有你想象的那么难,但是它可能需要你对计算集群的更多知识。这些说明假设你正在集群上使用SLURM。
Pytorch允许多节点训练,通过在每个节点上复制每个GPU上的模型并同步梯度。所以,每个模型都是在每个GPU上独立初始化的,本质上独立地在数据的一个分区上训练,除了它们都从所有模型接收梯度更新。
在高层次上:
在每个GPU上初始化一个模型的副本(确保设置种子,让每个模型初始化到相同的权重,否则它会失败)。 将数据集分割成子集(使用DistributedSampler)。每个GPU只在它自己的小子集上训练。 在.backward()上,所有副本都接收到所有模型的梯度副本。这是模型之间唯一一次的通信。
Pytorch有一个很好的抽象,叫做DistributedDataParallel,它可以帮你实现这个功能。要使用DDP,你需要做4的事情:
deftng_dataloader():d=MNIST()#4:Adddistributedsampler#samplersendsaportionoftngdatatoeachmachinedist_sampler=DistributedSampler(dataset)dataloader=DataLoader(d,shuffle=False,sampler=dist_sampler)defmain_process_entrypoint(gpu_nb):#2:setupconnectionsbetweenallgpusacrossallmachines#allgpusconnecttoasingleGPU"root"#thedefaultusesenv://world=nb_gpus*nb_nodesdist.init_process_group("nccl",rank=gpu_nb,worldworld_size=world)#3:wrapmodelinDPPtorch.cuda.set_device(gpu_nb)model.cuda(gpu_nb)model=DistributedDataParallel(model,device_ids=[gpu_nb])#trainyourmodelnow...if__name__=='__main__':#1:spawnnumberofprocesses#yourclusterwillcallmainforeachmachinemp.spawn(main_process_entrypoint,nprocs=8)
然而,在Lightning中,只需设置节点数量,它就会为你处理其余的事情。
#trainon1024gpusacross128nodestrainer=Trainer(nb_gpu_nodes=128,gpus=[0,1,2,3,4,5,6,7])
Lightning还附带了一个SlurmCluster管理器,可以方便地帮助你提交SLURM作业的正确详细信息。
10. 福利!在单个节点上多GPU更快的训练
事实证明,distributedDataParallel比DataParallel快得多,因为它只执行梯度同步的通信。所以,一个好的hack是使用distributedDataParallel替换DataParallel,即使是在单机上进行训练。
在Lightning中,这很容易通过将distributed_backend设置为ddp和设置GPUs的数量来实现。
#trainon4gpusonthesamemachineMUCHfasterthanDataParalleltrainer=Trainer(distributed_backend='ddp',gpus=[0,1,2,3])
对模型加速的思考
尽管本指南将为你提供了一系列提高网络速度的技巧,但我还是要给你解释一下如何通过查找瓶颈来思考问题。
我将模型分成几个部分:
首先,我要确保在数据加载中没有瓶颈。为此,我使用了我所描述的现有数据加载解决方案,但是如果没有一种解决方案满足你的需要,请考虑离线处理和缓存到高性能数据存储中,比如h5py。
接下来看看你在训练步骤中要做什么。确保你的前向传播速度快,避免过多的计算以及最小化CPU和GPU之间的数据传输。最后,避免做一些会降低GPU速度的事情(本指南中有介绍)。
接下来,我试图最大化我的batch size,这通常是受GPU内存大小的限制。现在,需要关注在使用大的batch size的时候如何在多个GPUs上分布并最小化延迟(比如,我可能会尝试着在多个gpu上使用8000 +的有效batch size)。
然而,你需要小心大的batch size。针对你的具体问题,请查阅相关文献,看看人们都忽略了什么!
标签: PyTorch模型训练 技巧


























相关新闻